Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Global environmental change is causing a decline in biodiversity with profound implications for ecosystem functioning and stability. It remains unclear how global change factors interact to influence the effects of biodiversity on ecosystem functioning and stability. Here, using data from a 24-year experiment, we investigate the impacts of nitrogen (N) addition, enriched CO2(eCO2), and their interactions on the biodiversity-ecosystem functioning relationship (complementarity effects and selection effects), the biodiversity-ecosystem stability relationship (species asynchrony and species stability), and their connections. We show that biodiversity remains positively related to both ecosystem productivity (functioning) and its stability under N addition and eCO2. However, the combination of N addition and eCO2diminishes the effects of biodiversity on complementarity and selection effects. In contrast, N addition and eCO2do not alter the relationship between biodiversity and either species asynchrony or species stability. Under ambient conditions, both complementarity and selection effects are negatively related to species asynchrony, but neither are related to species stability; these links persist under N addition and eCO2. Our study offers insights into the underlying processes that sustain functioning and stability of biodiverse ecosystems in the face of global change.more » « less
-
ABSTRACT Ecological stability plays a crucial role in determining the sustainability of ecosystem functioning and nature's contribution to people. Although the disruptive effects of extreme drought on ecosystem structure and functions are widely recognized, their effect on the stability of above‐ and belowground productivity remains understudied. We assessed the effects of drought on ecosystem stability using a 3‐year drought experiment established in six Eurasian steppe grasslands. The treatments imposed included ambient precipitation, chronic drought (66% reduction in precipitation throughout the growing season), and intense drought (complete exclusion of precipitation for two months during the growing season). We found that drought, irrespective of how it was imposed, reduced the stability of aboveground net primary productivity (ANPP) but had little impact on belowground net primary productivity (BNPP) stability. Reduced ANPP stability under drought was primarily attributed to changes in subordinate species stability, with mean annual precipitation (MAP) and its variability, historical drought frequency, and the aridity index (AI) also influencing responses to extreme drought. In contrast, BNPP stability was not related to any community factor investigated, but it was influenced by MAP variability and AI. Our findings that above‐ and belowground productivity stability in grasslands are differentially sensitive to multi‐year extreme drought under both common (MAP and AI) as well as unique drivers (plant community changes) highlight the complexity of predicting carbon cycle dynamics as hydrological extremes become more severe.more » « less
-
Abstract Grasslands cover approximately a third of the Earth’s land surface and account for about a third of terrestrial carbon storage. Yet, we lack strong predictive models of grassland plant biomass, the primary source of carbon in grasslands. This lack of predictive ability may arise from the assumption of linear relationships between plant biomass and the environment and an underestimation of interactions of environmental variables. Using data from 116 grasslands on six continents, we show unimodal relationships between plant biomass and ecosystem characteristics, such as mean annual precipitation and soil nitrogen. Further, we found that soil nitrogen and plant diversity interacted in their relationships with plant biomass, such that plant diversity and biomass were positively related at low levels of nitrogen and negatively at elevated levels of nitrogen. Our results show that it is critical to account for the interactive and unimodal relationships between plant biomass and several environmental variables to accurately include plant biomass in global vegetation and carbon models.more » « less
-
ABSTRACT AimGlobal climate change is compressing species' realised niches and further threatening their distributions. Species traits, especially the trait spectra synthesised from traits, are one way in which species can match changes in their environment. Hence, integrating trait spectra and niches will help us understand how species adapt to their environment under global change. LocationGlobal. Time PeriodPresent. Major Taxa StudiedAngiosperms. MethodWe collected root traits from 158 angiosperm species and leaf traits from 512 angiosperm species from a global trait database to construct the leaf and root trait ‘slow‐fast’ spectrum based on resource acquisition strategy, as well as the collaboration spectrum related to root mycorrhizal colonisation. After rebuilding their phylogenetic relationships and defining species' environmental niches based on 213,979 occurrences of these species, we examined the relationship between these trait spectra and environmental niches along global climatic patterns. ResultPlants with ‘slow’ leaf traits were generally associated with narrow niche breadths and marginal niche positions, especially in high precipitation areas. The relationship between the ‘slow‐fast’ spectrum in root traits and ‘marginal‐central’ niche position reversed with decreasing precipitation. However, the relationships between leaf traits and niche variables were significant for woody species but not for herbaceous species. Main ConclusionOur research expands the plant trait spectra in macroecology applications. The root and leaf ‘slow‐fast’ trait spectra of angiosperms are driven by both macroclimate and long‐term evolutionary pressure. Understanding how these traits relate to the niche of species helps to predict how that species is likely to adapt to environmental change, which can enhance the predictive ability of niche theory for plant environmental adaptability.more » « less
-
Abstract Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition.more » « less
An official website of the United States government
